1118 Binary Stirling Numbers

The Stirling number of the second kind $S(n, m)$ represents the number of ways to partition a set of n things into m nonempty subsets. For example, there are seven ways to split a four-element set into two parts:

$$
\begin{gathered}
\{1,2,3\} \cup\{4\},\{1,2,4\} \cup\{3\},\{1,3,4\} \cup\{2\},\{2,3,4\} \cup\{1\}, \\
\{1,2\} \cup\{3,4\},\{1,3\} \cup\{2,4\},\{1,4\} \cup\{2,3\}
\end{gathered}
$$

We can compute $S(n, m)$ using the recurrence,

$$
S(n, m)=m S(n-1, m)+S(n-1, m-1), \text { for integers } 1<m<n
$$

but your task is slightly different: given integers n and m, compute the parity of $S(n, m)$, i.e. $S(n, m)$ $\bmod 2$.

Example

$S(4,2) \bmod 2=1$.
Write a program that reads two positive integers n and m, computes $S(n, m) \bmod 2$, and writes the result.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The input consists two integers n and m separated by a space, with $1 \leq m \leq n \leq 1000$.

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

The output should be the integer $S(n, m) \bmod 2$.

Sample Input

1

42

Sample Output

1

