11175 From D to E and back

Anyone who goes to a psychiatrist ought to have his head examined.

Samuel Goldwyn

Take any directed graph \mathbf{D} with n vertices and m edges. You can make the Lying graph \mathbf{E} of \mathbf{B} in the following way. \mathbf{E} will have m vertices, one for each edge of \mathbf{D} . For example, if \mathbf{D} has an edge $\mathbf{u}\mathbf{v}$, then \mathbf{E} will have a vertex called $\mathbf{u}\mathbf{v}$. Now, whenever \mathbf{D} has edges $\mathbf{u}\mathbf{v}$ and $\mathbf{v}\mathbf{w}$, \mathbf{E} will have an edge from vertex $\mathbf{u}\mathbf{v}$ to vertex $\mathbf{v}\mathbf{w}$. There are no other edges in \mathbf{E} .

You will be given a graph \mathbf{E} and will have to determine whether it is possible for \mathbf{E} to be the Lying graph of some directed graph \mathbf{D} .

Input

The first line of input gives the number of cases, N (N < 220). N test cases follow. Each one starts with two lines containing m ($0 \le m \le 300$) and k. The next k lines will each contain a pair of vertices, \mathbf{x} and \mathbf{y} , meaning that there is an edge from \mathbf{x} to \mathbf{y} in \mathbf{E} . The vertices are numbered from 0 to m-1

Output

For each test case, output one line containing 'Case #x:' followed by either 'Yes' or 'No', depending on whether **E** is a valid Lying graph or not. Note that **D** is allowed to have duplicate edges and self-edges.

Sample Input

4

2

1

0 1 5

0

4

3 0 1

2 1

2 3

3

9

0 1

0 2

1 2

2 1

0 0

1 1

2 2

Sample Output

Case #1: Yes Case #2: Yes Case #3: No Case #4: Yes