11175 From D to E and back

Anyone who goes to a psychiatrist ought to have his head examined.
Samuel Goldwyn
Take any directed graph \mathbf{D} with n vertices and m edges. You can make the Lying graph \mathbf{E} of \mathbf{B} in the following way. E will have m vertices, one for each edge of \mathbf{D}. For example, if \mathbf{D} has an edge uv, then \mathbf{E} will have a vertex called $\mathbf{u v}$. Now, whenever \mathbf{D} has edges $\mathbf{u v}$ and $\mathbf{v w}, \mathbf{E}$ will have an edge from vertex uv to vertex vw. There are no other edges in \mathbf{E}.

You will be given a graph \mathbf{E} and will have to determine whether it is possible for \mathbf{E} to be the Lying graph of some directed graph \mathbf{D}.

Input

The first line of input gives the number of cases, $N(N<220)$. N test cases follow. Each one starts with two lines containing $m(0 \leq m \leq 300)$ and k. The next k lines will each contain a pair of vertices, \mathbf{x} and \mathbf{y}, meaning that there is an edge from \mathbf{x} to \mathbf{y} in \mathbf{E}. The vertices are numbered from 0 to $m-1$

Output

For each test case, output one line containing 'Case \#x:' followed by either 'Yes' or 'No', depending on whether \mathbf{E} is a valid Lying graph or not. Note that \mathbf{D} is allowed to have duplicate edges and self-edges.

Sample Input

4
2
1
01
5
0
4
3
01
21
23
3
9
01
02
12
10
20
21
00
11
22

Sample Output

Case \#1: Yes
Case \#2: Yes
Case \#3: No
Case \#4: Yes

